Congruent Triangles

Geometry
Chapter 4

Geometry 4

- This Slideshow was developed to accompany the textbook
- Larson Geometry
- By Larson, R., Boswell, L., Kanold, T. D., \& Stiff, L.
- 2011 Holt McDougal
- Some examples and diagrams are taken from the textbook.

Slides created by
Richard Wright, Andrews Academy

4.1 Apply Triangle Sum Property

Classify Triangles by
Sides

Scalene
Triangle No congruent sides

Isosceles Triangle Two congruent sides

4.1 Apply Triangle Sum Property

Classify Triangles by Angles

Acute Triangle 3 acute angles riangle

Right Triangle 1 right angle

Equiangular
Triangle
All congruent

4.1 Apply Triangle Sum Property

- Classify the following triangle by sides and angles

Scalene, Acute
Isosceles, Right

4.1 Apply Triangle Sum Property

- $\triangle A B C$ has vertices $A(0,0), B(3,3)$, and $C(-3,3)$. Classify it by is sides. Then determine if it is a right triangle.

Find length of sides using distance formula
$A B=V\left((3-0)^{2}+(3-0)^{2}\right)=V(9+9)=V 18 \approx 4.24$
$B C=V\left((-3-3)^{2}+(3-3)^{2}\right)=V\left((-6)^{2}+0\right)=V(36)=6$
$A C=V\left((-3-0)^{2}+(3-0)^{2}\right)=V(9+9)=V 18 \approx 4.24$
Isosceles

Check slopes to find right angles (perpendicular)
$m_{A B}=(3-0) /(3-0)=1$
$m_{B C}=(3-3) /(-3-3)=0$
$m_{A C}=(3-0) /(-3-0)=-1$
$A B \perp A C$ so it is a right triangle

4.1 Apply Triangle Sum Property

- Take a triangle and tear off two of the angles.
- Move the angles to the $3^{\text {rd }}$ angle.
- What shape do all three angles
 form?

Triangle Sum Theorem

The sum of the measures of the interior angles of a triangle is 180°.

$$
m \angle A+m \angle B+m \angle C=180^{\circ}
$$

Straight line

4.1 Apply Triangle Sum Property

Exterior Angle Theorem

The measure of an exterior angle of a triangle = the sum of the 2 nonadjacent interior angles.
$\mathrm{m} \angle 1=\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B}$

Proof:
$m \angle A+m \angle B+m \angle A C B=180^{\circ}$
$m \angle 1+m \angle A C B=180^{\circ}$
$m \angle 1+m \angle A C B=m \angle A+m \angle B+m \angle A C B$
$\mathrm{m} \angle 1=\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B}$
(triangle sum theorem)
(linear pair theorem)
(substitution)
(subtraction)

4.1 Apply Triangle Sum Property

Corollary to the Triangle Sum Theorem
The acute angles of a right triangle are complementary.

$$
\mathrm{m} \angle \mathrm{~A}+\mathrm{m} \angle \mathrm{~B}=90^{\circ}
$$

The proof involves saying that all three angles $=180$. Since $m \angle C$ is $90, m \angle A+m \angle B=$ 90.

4.1 Apply Triangle Sum Property

- Find the measure of $\angle 1$ in the diagram.

- Find the measures of the acute angles in the diagram.

$40+3 x=5 x-10 \rightarrow 50=2 x \rightarrow x=25$
$m \angle 1+40+3 x=180 \rightarrow m \angle 1+40+3(25)=180 \rightarrow m \angle 1+40+75=180 \rightarrow m \angle 1=65$
$2 \mathrm{x}+\mathrm{x}-6=90 \rightarrow 3 \mathrm{x}=96 \rightarrow \mathrm{x}=32$
Top angle: $2 x \rightarrow 2(32)=64$
Angle at right: $x-6 \rightarrow 32-6=26$

4.1 Apply Triangle Sum Property

- 221 \#2-36 even, 42-50 even, 54-62 even = 28 total

Answers and Quiz

- 4.1 Answers
- 4.1 Quiz

4.2 Apply Congruence and Triangles

Congruent \cong

Exactly the same shape and size.

Congruent

Not Congruent

4.2 Apply Congruence and Triangles

- $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$

- | - $\overline{A B} \cong \overline{\mathrm{~A}} \cong \overline{D E}$ | $\angle \mathrm{~B} \cong \angle \mathrm{E}$ | $\angle \mathrm{C} \cong \angle \mathrm{F}$ |
| ---: | :--- | ---: |
| EF | $\overline{A C} \cong \overline{D F}$ | |

4.2 Apply Congruence and Triangles

- In the diagram, $\mathrm{ABGH} \cong \mathrm{CDEF}$
- Identify all the pairs of congruent corresponding parts
- Find the value of x and find $m \angle H$.

$A B \cong C D, B G \cong D E, G H \cong E F, A H \cong C F$
$\angle \mathrm{A} \cong \angle \mathrm{C}, \angle \mathrm{B} \cong \angle \mathrm{D}, \angle \mathrm{G} \cong \angle \mathrm{E}, \angle \mathrm{H} \cong \angle \mathrm{F}$
$4 x+5=105$
$4 x=100$
$x=25$
$\mathrm{m} \angle \mathrm{H}=105^{\circ}$

4.2 Apply Congruence and Triangles

- Show that $\triangle \mathrm{PTS} \cong \Delta \mathrm{RTQ}$

All of the corresponding parts of $\triangle P T S$ are congruent to those of $\triangle R T Q$ by the indicated markings, the Vertical Angle Theorem and the Alternate Interior Angle theorem.

4.2 Apply Congruence and Triangles

Third Angle Theorem
If two angles of one triangle are congruent to two angles of another triangle, then the third angles are congruent.

Properties of Congruence of Triangles
Congruence of triangles is Reflexive, Symmetric, and Transitive
$75+20+?=180$
$95+$? $=180$
? $=85$

4.2 Apply Congruence and Triangles

- In the diagram, what is $\mathrm{m} \angle \mathrm{DCN}$?

- By the definition of congruence, what additional information is needed to know that $\triangle \mathrm{NDC} \cong \Delta \mathrm{NSR}$?
$\mathrm{m} \angle \mathrm{DCN}=75^{\circ}$; alt int angle theorem (or $3^{\text {rd }}$ angle theorem)
$D N \cong S N, D C \cong S R$

4.2 Apply Congruence and Triangles

- 228 \#4-16 even, 17, 20, 26, 28, 32-40 all = 20 total

Answers and Quiz

- 4.2 Answers
- 4.2 Quiz

4.3 Prove Triangles Congruent by SSS

SSS (Side-Side-Side Congruence Postulate)

If three sides of one triangle are congruent to three sides of another triangle, then the two triangles are congruent

- True or False
- $\Delta \mathrm{DFG} \cong \Delta \mathrm{HJK}$

- $\triangle \mathrm{ACB} \cong \triangle C A D$

True

False

4.3 Prove Triangles Congruent by SSS

- Given: $\overline{A B} \cong \overline{D C} ; \overline{A D} \cong \overline{B C}$
- Prove: $\triangle A B D \cong \triangle C D B$

$A B \cong D C ; A D \cong C B$
$B D \cong B D$
(given)
$\triangle A B D \cong \triangle C D B$
(reflexive)
(SSS)

4.3 Prove Triangles Congruent by SSS

$\Delta J K L$ has vertices $J(-3,-2)$,
$K(0,-2)$, and $L(-3,-8)$.
$\triangle R S T$ has vertices $R(10,0)$,
$S(10,-3)$, and $T(4,0)$.
Graph the triangles in the same coordinate plane and show that they are congruent.

					\mathbf{N}					

$$
\begin{aligned}
& \mathrm{JK}=\mathrm{V}\left((0-(-3))^{2}+(-2-(-2))^{2}=\mathrm{V}(9+0)=3\right. \\
& \mathrm{KL}=\mathrm{V}\left((-3-0)^{2}+(-8-(-2))^{2}=\mathrm{V}(9+36)=\mathrm{V} 45\right. \\
& \mathrm{JL}=\mathrm{V}\left((-3-(-3))^{2}+(-8-(-2))^{2}=\mathrm{V}(0+36)=6\right.
\end{aligned}
$$

$$
\begin{aligned}
& R S=V\left((10-10)^{2}+(-3-0)^{2}\right)=V(0+9)=3 \\
& S T=V\left((4-10)^{2}+(0-(-3))^{2}\right)=V(36+9)=V 45 \\
& \text { RT }=V\left((4-10)^{2}+(0-0)^{2}\right)=V(36+0)=6
\end{aligned}
$$

4.3 Prove Triangles Congruent by SSS

- Determine whether the figure is stable.

- 236 \#2-30 even, 31-37 all = 22 total
- Extra Credit 239 \#2, 4 = +2

Not stable

Stable since has triangular construction

Not stable, lower section does not have triangular construction

Answers and Quiz

- 4.3 Answers
- 4.3 Quiz

4.4 Prove Triangles Congruent by SAS and HL

SAS (Side-Angle-Side Congruence Postulate)

If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent

The angle must be between the sides!!!

4.4 Prove Triangles Congruent by SAS

and HL

- Given: ABCD is square; R, S, T, and U are midpts; $\overline{R T} \perp \overline{S U} ; \overline{S V} \cong \overline{V U}$
- Prove: $\Delta S V R \cong \Delta U V R$

$A B C D$ is square; R, S, T, and U are midpts; $R T \perp S U ; S V \cong V U$
$\angle \mathrm{SVR}$ and $\angle \mathrm{UVR}$ are rt angles
$\angle \mathrm{SVR} \cong \angle \mathrm{UVR}$
$R V \cong R V$
$\Delta S V R \cong \Delta U V R$
(given)
(\perp lines form $4 \mathrm{rt} \angle$)
(all rt angles are congruent) (reflexive)

4.4 Prove Triangles Congruent by SAS and HL

- Right triangles are special
- If we know two sides are congruent we can use the Pythagorean Theorem (ch 7) to show that the third sides are congruent

4.4 Prove Triangles Congruent by SAS and HL

HL (Hypotenuse-Leg Congruence Theorem)
If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of another right triangle, then the two triangles are congruent

4.4 Prove Triangles Congruent by SAS

 and HL- Given: $\angle \mathrm{ABC}$ and $\angle \mathrm{BCD}$ are rt $\angle \mathrm{s} ; \overline{A C} \cong \overline{B D}$
- Prove: $\triangle \mathrm{ACB} \cong \triangle \mathrm{DBC}$ Statements

Reasons
$\angle A B C$ and $\angle B C D$ are rt $\angle \mathrm{s} ; \mathrm{AC} \cong B D$
$\triangle \mathrm{ACB}$ and $\triangle \mathrm{DBC}$ are rt Δ $B C \cong C B$
$\triangle \mathrm{ACB} \cong \triangle \mathrm{DBC}$
(given)
(def rt Δ)
(reflexive)
(HL)

4.4 Prove Triangles Congruent by SAS and HL

- 243 \#4-28 even, 32-48 even = 22 total

Answers and Quiz

- 4.4 Answers
- 4.4 Quiz

4.5 Prove Triangles Congruent by ASA and AAS

- Use a ruler to draw a line of 5 cm .
- On one end of the line use a protractor to draw a 30° angle.
- On the other end of the line draw a 60° angle.
- Extend the other sides of the angles until they meet.
- Compare your triangle to your neighbor's.
- This illustrates ASA.

4.5 Prove Triangles Congruent by ASA and AAS

ASA (Angle-Side-Angle Congruence Postulate)
If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the two triangles are congruent

The side must be between the angles!

4.5 Prove Triangles Congruent by ASA and AAS

AAS (Angle-Angle-Side Congruence Theorem)
If two angles and a non-included side of one triangle are congruent to two angles and a non-included side of another triangle, then the two triangles are congruent

The side is NOT
between the angles!

4.5 Prove Triangles Congruent by ASA and AAS

- In the diagram, what postulate or theorem can you use to prove that $\Delta \mathrm{RST} \cong \Delta \mathrm{VUT}$?

$\angle \mathrm{RTS} \cong \angle \mathrm{UTV}$ by Vert. Angles are Congruent
$\Delta \mathrm{RST} \cong \Delta \mathrm{VUT}$ by AAS

4.5 Prove Triangles Congruent by ASA and AAS

- Flow Proof
- Put boxes around statements and draw arrows showing direction of logic Statement 2

| Statement 1 |
| :--- | :--- |
| Given |\longrightarrow| What the Given Tells us |
| :--- | :--- |
| Statement 3
 Definition from
 Picture or given |\longrightarrow| Statement 4 |
| :--- |
| What the Given Tells us |

Statement 5
Combine the previous statements

4.5 Prove Triangles Congruent by ASA and AAS

- Given: $\overline{A B} \perp \overline{B C}, \overline{D E} \perp \overline{E F}, \overline{A C} \cong \overline{D F}, \angle C \cong \angle F$
- Prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$
$\overline{A B} \perp \overline{B C}$

Given	
$\overline{D E} \perp \overline{E F}$	
Given	

$\overline{A C} \simeq \overline{D F}$
$\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ AAS
Given
$\angle \mathrm{C} \cong \angle \mathrm{F}$
Given

4.5 Prove Triangles Congruent by ASA and AAS

- Given: $\angle \mathrm{CBF} \cong \angle C D F, \overline{B F} \cong \overline{F D}$
- Prove: $\triangle \mathrm{ABF} \cong \triangle \mathrm{EDF}$
$\angle C B F \cong \angle C D F$
Given
$\angle C B F, \angle A B F$ supp

Linear Pair Post.
$\angle C D F, \angle E D F$ supp
$\triangle \mathrm{ABF} \cong \triangle \mathrm{EDF}$ ASA
$\overline{B F} \cong \overline{F D}$
$\angle \mathrm{BFA} \cong \angle \mathrm{DFE}$
Given
Vert. $\angle \mathrm{s} \cong$

4.5 Prove Triangles Congruent by ASA and AAS

- 252 \#2-20 even, 26,28 , 32-42 even $=18$ total

Answers and Quiz

- 4.5 Answers
- 4.5 Quiz

4.6 Use Congruent Triangles

- By the definition of congruent triangles, we know that the corresponding parts have to be congruent

CPCTC

Corresponding Parts of Congruent Triangles are Congruent
Your book just calls this "definition of congruent triangles"

4.6 Use Congruent Triangles

- To show that parts of triangles are congruent
- First show that the triangles are congruent using - SSS, SAS, ASA, AAS, HL
- Second say that the corresponding parts are congruent using - CPCTC or "def $\cong \Delta$ "

4.6 Use Congruent Triangles

- Write a plan for a proof to show that $\angle \mathrm{A} \cong \angle \mathrm{C}$

- Show that $\overline{B D} \cong \overline{B D}$ by reflexive
- Show that triangles are \cong by SSS
- Say $\angle \mathrm{A} \cong \angle \mathrm{C}$ by def $\cong \triangle$ or CPCTC

4.6 Use Congruent Δ

- Given: $\overline{A B} \cong \overline{D E}, \overline{A B} \| \overline{D E}$
- Prove: C is the midpoint of $\overline{A B}$

$\overline{A B} \cong \overline{D E}, \overline{A B} \| \overline{D E}$
$\angle B \cong \angle D, \angle A \cong \angle E$
$\triangle A B C \cong \triangle E D C$
$\overline{\boldsymbol{A C}} \cong \overline{\boldsymbol{C E}}$
C is midpoint of $\overline{A E}$
(given)
(Alt. Int. \angle Thrm)
(CPCTC)
(Def midpoint)

4.6 Use Congruent Triangles

- 259 \#2-10 even, 14-28 even, 34, 38, 41-46 all = 21 total
- Extra Credit 263 \#2, 4 = +2

Answers and Quiz

- 4.6 Answers
- 4.6 Quiz

4.7 Use Isosceles and Equilateral Triangles

- Parts of an Isosceles Triangle

4.7 Use Isosceles and Equilateral Triangles

Base Angles Theorem
If two sides of a triangle are congruent, then the angles opposite them are congruent.
Converse of Base Angles Theorem
If two angles of a triangle are congruent, then the two sides opposite them are congruent.

4.7 Use Isosceles and Equilateral Triangles

- Complete the statement
- If $\overline{H G} \cong \overline{H K}$, then \angle ? $\cong \angle$? .
- If $\angle \mathrm{KHJ} \cong \angle \mathrm{KJH}$, then ? \cong ? .

$\angle \mathrm{HKG} \cong \angle \mathrm{HGK}$
$K J \cong K H$

4.7 Use Isosceles and Equilateral Triangles

Corollary to the Base Angles Theorem
If a triangle is equilateral, then it is equiangular.
Corollary to the Converse of Base Angles Theorem
If a triangle is equiangular, then it is equilateral.

4.7 Use Isosceles and Equilateral Triangles

- Find ST
- Find $m \angle T$

$\mathrm{ST}=5$
$\mathrm{m} \angle \mathrm{T}=60^{\circ}$ (all angles in equilateral/equiangular triangles are 60°)

4.7 Use Isosceles and Equilateral Triangles

- Find the values of x and y

- What triangles would you use to show that $\triangle A E D$ is isosceles in a proof?

$x=60$; equilateral triangle
Each base angle by y; $60+?=90 \rightarrow ?=30$
Angle sum theorem: $30+30+y=180 \rightarrow y=120$
$\triangle A B D, \triangle D C A$

4.7 Use Isosceles and Equilateral
 Triangles

- 267 \#2-20 even, 24 -34 even, $38,40,46,48$, 5260 even $=25$ total

Answers and Quiz

- 4.7 Answers
- 4.7 Quiz

4.8 Perform Congruence Transformations

- Transformation is an operation that moves or changes a geometric figure to produce a new figure
- Original figure \rightarrow Image

4.8 Perform Congruence Transformations

- Name the type of transformation shown.

Reflection

4.8 Perform Congruence Transformations

- Congruence Transformation
- The shape and size remain the same
- Translations
- Rotations
- Reflections

4.8 Perform Congruence Transformations

- Translations
- Can describe mathematically
- $(x, y) \rightarrow(x+a, y+b)$
- Moves a right, b up

4.8 Perform Congruence Transformations

- Reflections
- Can be described mathematically by
- Reflect over y-axis: $(x, y) \rightarrow(-x, y)$
- Reflect over x-axis: $(x, y) \rightarrow(x,-y)$

4.8 Perform Congruence Transformations

Figure WXYZ has the vertices $W(-1,2), X(2,3), Y(5,0)$, and $Z(1,-1)$. Sketch WXYZ and its image after the translation (x, y) $\rightarrow(x-1, y+3)$.

4.8 Perform Congruence Transformations

The endpoints of $\overline{R S}$ are $\mathrm{R}(4,5)$ and $\mathrm{S}(1,-3)$. A transformation of $\overline{R S}$ results in the image $\overline{T U}$, with coordinates $T(4,-$ $5)$ and $U(1,3)$. Tell which transformation and write the coordinate rule.

Reflect over x-axis $(x, y) \rightarrow(x,-y)$

4.8 Perform Congruence Transformations

- Rotations
- Give center of rotation and degree of rotation
- Rotations are
clockwise or
counterclockwise

4.8 Perform Congruence Transformations

- Tell whether \triangle PQR is a rotation of \triangle STR. If so, give the angle and direction of rotation.

					${ }^{9}$				
	0								
			-						
		\square			R			s	
	P		-1				\square		x
					\downarrow			T	

180° (either direction is correct)

4.8 Perform Congruence Transformations

- Tell whether $\triangle O C D$ is a rotation of $\triangle O A B$. If so, give the angle and direction of rotation

- 276 \#2-42 even, 46-50 even $=24$ total
- Extra Credit 279 \#2, 6 = +2

Not a rotation

Answers and Quiz

- 4.8 Answers
- 4.8 Quiz

4.Review

- 286 \#1-15
= 15 total

CHAPIER TEST

Classify the triangle by its sides and by its angles.

In Exercises 4-6, find the value of x.

7. In the diagram, $D E F=G \approx W X F$ Find the values of x and y :

In Exercises 8-10, decide whether the triangles can be proven congruent by the given postulate.
8. $\triangle A B C=\triangle E D C$ by SAS

9. $\triangle F G H=\triangle J K I$ by ASA

10. $\triangle M N P=\triangle P Q M$ by $S S S$

11. Write a proof

GIVEN - $\triangle A B C$ is isosceles with base $\overline{A C}, \overline{B D}$ bisects $\angle B$ PROVE $\triangle A B D=\triangle C R D$
12. What is the third congruence needed to prove that $\triangle P Q R=\triangle S T U$ using the indicated theorem?
a. HL b. AAS

Decide whether the transformation is a transiation, reflection, of rotntion.

